Absorption features of high redshift galactic winds

نویسنده

  • P. Richter
چکیده

The environment of high-redshift galaxies is characterized by both wind-driven outflowing gas and gravitationally infalling streams. To investigate such galaxy-IGM interplay we have generated synthetic optical absorption line spectra piercing the volume surrounding a starbursting analog of a Lyman Break Galaxy selected in a z ≈ 3 output from a SPH simulation, including a detailed treatment of mechanical feedback from winds. Distributions for several observable species (HI, CIII, CIV, SiII, SiIII, SiIV, OVI, OVII, and OVIII) have been derived by post-processing the simulation outputs. The hot wind material is characterized by the presence of high-ionization species such as OVI, OVII, and OVIII (the latter two observable only in X-ray bands); the colder (T < 10 K) infalling streams can be instead identified by the combined presence of SiII, SiIII, and CIII optical absorption together with OVI that surrounds the cooler gas clumps. However, both line profile and Pixel Optical Depth analysis of the synthetic spectra show that the intergalactic filament in which the wind-blowing galaxy is embedded produces absorption signatures that closely mimic those of the wind environment. We conclude that it is generally very difficult to clearly identify wind-blowing galaxies and their complex gaseous environment at high redshift in optical QSO absorption-line spectra based solely on the observed ion absorption patterns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Galactic Wind Signatures around High Redshift Galaxies

We carry out cosmological chemodynamical simulations with different strengths of supernova (SN) feedback and study how galactic winds from star-forming galaxies affect the features of hydrogen (HI) and metal (CIV and OVI) absorption systems in the intergalactic medium at high redshift. We find that the outflows tend to escape to low density regions, and hardly affect the dense filaments visible...

متن کامل

Galactic Winds in the Intergalactic Medium

We have performed hydrodynamical simulations to investigate the effects of galactic winds on the high-redshift (z = 3) universe. Strong winds suppress the formation of low-mass galaxies significantly, and the metals carried by them produce C IV absorption lines with properties in reasonable agreement with observations. The winds have little effect on the statistics of the H I-absorption lines, ...

متن کامل

The impact of galactic winds from LBGs on the Intergalactic Medium

An excess of sight-lines close to Lyman-break galaxies (LBGs) with little or no absorption in QSO absorption spectra has been reported and has been interpreted as the effect of galactic winds on the Intergalactic Medium. We use here numerical simulations to investigate the flux probability function close to plausible sites of LBGs. We show that the flux distribution near our LBGs in the simulat...

متن کامل

Ubiquitous Outflows in Deep2 Spectra of Star-forming Galaxies at Z=1.4

Galactic winds are a prime suspect for the metal enrichment of the intergalactic medium and may have a strong influence on the chemical evolution of galaxies and the nature of QSO absorption line systems. We use a sample of 1406 galaxy spectra at z ∼ 1.4 from the DEEP2 redshift survey to show that blueshifted Mg ii λλ 2796, 2803 Å absorption is ubiquitous in starforming galaxies at this epoch. ...

متن کامل

Observational signatures of feedback in QSO absorption spectra

Models for the formation of galaxies and clusters of galaxies require strong feedback in order to explain the observed properties of these systems. We investigate whether such feedback has observational consequences for the intergalactic medium, as probed in absorption towards background quasars. A typical quasar sight-line intersects one proto-cluster per unit redshift, and significant feedbac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008